
Intro to Unix, Helix and Biowulf

Susan Chacko Mark Patkus

staff@helix.nih.gov

CIT, NIH

5 Dec 2013

  What is Unix? Why do people use Unix commandline
tools instead of point-and-click interfaces?

  Intro to Unix. Some basic commands for file manipulation,
editing, navigating the filesystem, running programs.

  Hands-on intro to Unix
  What are Helix and Biowulf?
  Scientific programs on Helix (and by default, on Biowulf)
  When you would use Helix and when you would use

Biowulf
  Hands-on running a scientific program on Helix.
  Helix Systems web resources.
  Brief intro to Biowulf.
  Demo of running a program on Biowulf.

Overview

Demo of Unix script running on Helix.

(courtesy of Martine Zilversmit, NIAID)

Over to Mark

Introduction to Linux

Bash and Basic GNU/Linux and Unix Concepts

12/4/13 5

We will….

12/4/13 6

  Get your toes wet. Unix and
Linux are gargantuan topics that
only come into focus with
experience.

  Provide some basic concept
information for users familiar
with MacOS or Windows.

  Get you familiar with Linux
commands.

  Get you started in
understanding command line
interfaces.

Linux in Science (why?)

  Popular due to shared functional legacy with Unix systems
associated with research since 1970s.

  Source code availability and semi-liberal licensing made it easy
for researchers.

  Enthusiasm for the Linux project starting in the 1990s led to
critical mass of development.

  Wide range of tools available for users (compilers, scientific
libraries, debuggers, etc).

  Performance, functionality and portability

12/4/13 7

Linux accounts

12/4/13 8

  To access a Linux system, you need to have an account
  A Linux account includes the following:
 - username and password
 - uid and gid
 - a home directory, which is where you are placed by
default when you log in
 - a default shell

Your Shell

  On log-in, the system runs a shell
  A shell is the environment within which

you will interface with the kernel via
commands

  It determines the syntax for complex
command-line operations and shell
scripting

  The shell you’re using is called “bash,” the
successor to the venerable “Bourne Shell”
called “sh”

  BASH: “Bourne Again SHell”
12/4/13 9

Shell preferences

12/4/13 10

  When you login, startup scripts are run to
setup your environment

  For bash, you can customize your
environment by adding or modifying
environment variables and aliases in
the .bashrc file in your home directory:

  Examples:
 alias list=‘ls’
 export EDITOR=/usr/bin/vim
 export PATH=$PATH:/scratch/myusername

Summary of Linux commands

12/4/13 11

awk allows manipulation of text

bg place suspended job into background

cat view contents of a file

cd change directory

chmod change permissions on a file/directory

cp copy a file

cut extract a field of data from text output

echo output text to the terminal or to a file

emacs text editor

fg bring suspended job to foreground

file display file type

find search for files

grep search a file or command output for a pattern

head view beginning of file

history display list of most recent commands

less scroll forward or back through a file

ln create a link to a file

ls list files in a directory

man view information about a command

mkdir make directory

more scroll through file a page at a time

mv change the name of a file (move)

nano/pico text editors

printenv display shell variables

ps show current process information

pwd display current working directory

rm delete or remove a file

rmdir delete or remove a directory

sed stream editor

sleep pause

sort perform a sort of text

stat display file status info

tail view end of the file

touch create an empty file or update timestamps

tr character substitution tool

uniq remove identical, adjacent lines

vi/vim text editor

wc print number of lines, words or characters

which shows full path of a command

whoami displays username

Linux Command Basics

12/4/13 12

  Linux commands are case-sensitive
 ls is not the same as LS
  Linux commands may have options that come after the

command that start with a “–” and followed by a letter:
$ ls -l
  Linux commands may allow for arguments:
$ ls /scratch
  You can run more than one command on the same line by

separating the commands with a semicolon (;)
$ date; ls
  Most Linux commands have a manual or man page to describe

how they can be used:
  $man ls

Using SSH to log in:

But First! Introducing OpenSSH:

  SSH is the “Secure SHell”
  All traffic over SSH is encrypted
  SSH supports file-transfers

12/4/13 13

Logging in

  Log into your workstation
  We will be using Helix student accounts today: studen1 to

studen20 (no ‘t’ in the account name)
  MacOS:

  Finder -> Applications -> Utilities -> Terminal
  Now type: “ssh –Y username@helix.nih.gov”
  At the prompt, enter the account password

  Windows:
  Launch PuTTY. Under “Host Name (or IP address), type:

username@helix.nih.gov
  …and click “Open”
  At the prompt, enter the password

12/4/13 14

Exercise #1: First commands

[username@helix ~]$

  Type “whoami”, press Enter – who are you?

  Type “pwd”, press Enter – where are you?

  Use the cd command to navigate to the root directory
  cd /

  pwd

  ls –l

  Type “echo $SHELL” – what does it show?
  Type “echo $USER” – what does this show?
  Type “cd” to go back to your home directory

12/4/13 15

Files

12/4/13 16

  Each file (and directory) has a name
  The filename can contain letters, numbers and special

characters
  A filename MUST be unique within a directory…though

files with the same filename can exist in different
directories

  Again, Linux is case sensitive so a file named “myfile” and
“Myfile” can co-exist in the same directory – the names
are different.

  Filenames can be lengthy

Directories

12/4/13 17

  A directory is a special type of file that can hold other files
  The “working directory” is the directory with which your shell

is currently associated…where you currently are! When you
first login, you will normally be in your home directory, /home/
username

  Type ‘cd’ is used to change directories…without an argument
it takes you back to your home directory

  Type ‘pwd’ to view the current or present working directory
  Type ‘ls’ to view contents of your working directory

The “ls” command
  “ls” lists files and directories
  Like almost all commands, it can take a number of “flags”

as arguments to change the behavior the program
  cd to your home directory:
$ cd
  Try “ls -a”
  Try “ls -la”
  Try “ls -l”
  Now try “ls --help”

12/4/13 18

Long List Output Explained (a little)
  From left to right:
•  Unix permissions
•  Hard links
•  Owner
•  Group ownership
•  File size in bytes
•  Modification date
•  Name of file
Special Files:
•  . is the current (present) working directory
•  .. is the “parent” directory, one level “back”

-rw-r--r--. 1 root root 49 Apr 27 2011 system-release-cpe
drwxr-xr-x. 2 root root 4096 Dec 3 2009 terminfo
-rw-r--r-- 1 root root 45 May 20 2009 Trolltech.conf
drwxr-xr-x. 4 root root 4096 Aug 10 11:08 udev
-rw-r--r--. 1 root root 473 Jan 15 2010 updatedb.conf
-rw-r--r--. 1 root root 1962 Apr 19 2010 vimrc
-rw-r--r--. 1 root root 1962 Apr 19 2010 virc
-rw-r--r--. 1 root root 3001 Mar 21 2011 warnquota.conf
-rw-r--r--. 1 root root 4479 May 10 2010 wgetrc
drwxr-xr-x 2 root root 4096 Aug 15 10:23 wpa_supplicant
drwxr-xr-x. 5 root root 4096 Aug 15 10:23 X11
drwxr-xr-x. 4 root root 4096 Aug 15 10:23 xdg
drwxr-xr-x. 2 root root 4096 Aug 10 11:11 xinetd.d
drwxr-xr-x. 2 root root 4096 Aug 10 11:04 xml
-rw-r--r--. 1 root root 585 Jun 24 2010 yp.conf
drwxr-xr-x. 5 root root 4096 Oct 26 10:23 yum
-rw-r--r-- 1 root root 813 Oct 17 16:37 yum.conf
drwxr-xr-x. 2 root root 4096 Oct 17 16:37 yum.repos.d

12/4/13 19

Change Directory: cd

  The “cd” command:
“cd” (change
directory) is used to
do just that, try
moving to directories
and see what’s in
them

  The “pwd” command:
  “pwd” – present

working directory

$ cd /home/$USER
$ ls –l
[output]
$ cd ..
$ pwd
/home
$ cd /etc
$ ls –l
[output]
$ cd
$ pwd

12/4/13 20

Wildcards

12/4/13 21

  With many Linux commands, you can use wildcards to
match characters

  The ‘*’ can be used to match zero or more characters
Examples:
$ ls bear*
bears bears7 bears78
$ ls *bear*
bears bears7 bears78 polarbears

Let’s go home!

12/4/13 22

  The “~” is a special character that is short-hand for “/home/
username”

  The environmental variable $HOME also stores the path of “/
home/username”

  Four ways to get to your home directory:

  But you can also use the “~” and $HOME as arguments with
other commands:

$ cd ~
$ cd $HOME
$ cd /home/username
$ cd

$ ls ~/Linux
$ ls $HOME/Linux

Absolute and Relative paths

  The starting “/” in the
directory argument
explicitly spells out a
pathname – specifying an
absolute or full path

  No leading “/” means you

are specifying a path that
is relative to the current
working directory.

$ cd /home/username

Absolute path:

$ cd /home/username/Linux

Relative path:

$ cd Linux/

Using ~
$ cd ~/Linux

$ cd /home/username/Linux

12/4/13 23

Cat and Echo

Use cat to display file contents to the terminal:

Use echo to output arbitrary text to the terminal:

$ cat read-write.txt

$ cat read-write.txt read-only.txt

$ echo ‘Hello World!’

$ echo without single quotes

$ echo ‘output’ > Myoutput

12/4/13 24

“cat” is short for concatenate. The “cat”
command takes one or more files and
concatenates their contents to standard output.

Output Redirection to Files

Redirect output (‘>’):

Append to files (‘>>’):

$ cat read-write.txt > file1

$ cat read-write.txt read-only.txt > file2

$ cat file2

$ echo ‘Hi there!’ > file

$ cat file

$ echo ‘Hi yourself!’ >> file

$ cat read-write.txt >> file

$ cat read-only.txt >> file

12/4/13 25

Exercise #2: cat and echo

cat a file to view contents

Using echo

12/4/13 26

$ pwd
$ cd /home/$USER/Linux
$ cat lions

$ cat tigers
$ cat bears
$ cat lions tigers > animals

$ cat animals
$ cat bears >> animals
$ cat animals

$ echo my name is Jason

$ echo “my name is $USER” >> animals

$ cat animals

Creating and deleting files/directories

Using touch and mkdir Using rm to remove files and
directories

To create an empty file,
use the touch command:

$ touch mynewfile

You can also create a file
using an editor such as
pico, vi or emacs:

$ pico penguinfile

To create a directory:

$ mkdir MyDirectory

To remove a file:
$ touch myFile

$ rm myFile

To remove a directory:

$ rmdir Mynewdirectory
rmdir only works if the
directory is empty!

Use ‘rm –r’ to remove a
directory with files:
$ rm –r MyDirectory

 12/4/13 27

Exercise #3: Creating and deleting files

Creating a file and directory

Deleting a file and directory

12/4/13 28

$ cd /home/$USER
$ echo ‘I love science!’ > science
$ touch science_project
$ mkdir scienceclass
$ ls –la science*

$ rm science*
$ ls –la science*
What happened?
$ rmdir scienceclass

Moving /Copying files

Move (mv) Copy (cp)

12/4/13 29

Can be used to move a
file or rename a file
(some Linux versions
have a ‘rename’
command, but not all):

$ touch football
$ ls –l football
$ mv football kickball

$ ls –l *ball
$ mkdir sports
$ mv sports sports2

$ ls –ld sports*
$ mv kickball sports2
$ ls –la sports2

To copy a file or
directory, use the cp
command:
$ echo ‘Goal!!’ > soccer

$ cp soccer soccerball

$ ls –la soccer*

$ cp –p soccer soccerball

$ ls –la soccer*

$ cp –pr sports2 sports3

Exercise #4: Moving/Copying Files

Move (mv)

Copy (cp)
$ cd /home/$USER/Linux
$ touch basketball

$ mv basketball hockey
$ ls –la basketball

$ ls –la hockey

$ cp hockey icehockey
$ mkdir hockeystick

$ mv icehockey hockeypuck
$ cp –pr hockeystick hockeypuck

$ ls –la hockey*

$ ls –la *hockey

12/4/13 30

Displaying/Editing Files

“more” or “less”
“head” or “tail”

Text editors:

$ more colleges.txt

$ less colleges.txt

$ head colleges.txt

 - prints out the first 10
lines by default. Can use
the –n argument to specify
the number of lines

$ tail –20 colleges.txt

 - prints out the last 20
lines

Good simple editors:
  pico (pine composer)
  nano (pico clone)
Good choices for editing in a
terminal are:
  “vim” (vi-improved)
  “emacs” (Editor MACRroS)

12/4/13 31

$ pico colleges.txt

(“Ctrl-x” to quit, “n” to
not save changes)

pico – a simple editor

12/4/13 32

The essentials:
  Just start typing – can use arrow keys to position,

backspace or delete key to delete characters to the left
  Keystrokes for basic commands at bottom of the screen
  ^G – help screen (^C to exit help)
  ^O – save the file
  ^W – search for a string
  ^X – exit nano
$ nano --help

$ pico filename

wc and uniq

“wc” (word count)

$ wc nonsense.txt

 19 95 505 nonsense.txt

Output shows the number of lines, words and characters in
the file. Can use arguments to get just one of the
values:

$ wc –l nonsense.txt # num of lines

$ wc –w nonsense.txt # num of words

$ wc –m nonsense.txt # num of characters

12/4/13 33

“uniq” (unique lines)
uniq can either show or omit duplicate consecutive lines
in a file or output

$ uniq bears # will show all unique lines

$ uniq –d bears # show only duplicate lines

grep – pattern matching search of a file

“grep” – global/ regular expression/ print

12/4/13 34

$ grep cat nonsense.txt # all lines with ‘cat’
$ grep dog nonsense.txt # all lines with ‘dog’
$ grep –i dog nonsense.txt # ignore case when searching
$ grep –v dog nonsense.* # all lines WITHOUT ‘dog’
$ grep oc nonsense.txt # lines with ‘oc’
$ grep ^oc nonsense.txt # lines starting with ‘oc’
$ grep oc$ nonsense.txt # lines ending with ‘oc’
$ grep ‘^oc\|oc$’ nonsense.txt # ‘oc’ at start or end

grep is a powerful tool. Use it (as well as egrep...extended grep)

$ grep --help
$ man grep

Sorting

Sort command

“sort” can be used to read a
file, sort the contents and
output to the terminal

$ cat baseball.txt

$ sort baseball.txt

$ sort –r baseball.txt

$ sort –b -k2 baseball.txt

$ sort –bn -k2 baseball.txt

$ sort –bnr –k2 baseball.txt

$ sort –help

12/4/13 35

Pipes (redirect to other processes)
Much like you can write
output to files, you can write
output to other commands
using pipes “|”

$ cat college1 college2 | sort | uniq

Write to a file at the end:

$ cat college1 college2 | sort | uniq |grep ^B > Colleges

12/4/13 36

Exercise #5: Sorting and redirecting

12/4/13 37

  Look at the contents of two files, grocery1 and grocery2
(use cat command)

  Combine the two files using the cat command and then
use the sort and uniq commands to get a list of sorted,
unique items for the grocery list

  Now redirect the output to a file named grocery3
  Use the wc command to determine how many unique

items are on the list (in the grocery3 file).
  Use grep and wc to determine how many items in the

grocery3 list start with the letter ‘c’

Exercise #5 continued

12/4/13 38

  $ cat grocery1
  $ cat grocery2
  $ cat grocery1 grocery2 | sort | uniq
  $ cat grocery1 grocery2 | sort | uniq |wc –l
You should have 32 items
  $cat grocery1 grocery2 | sort | uniq > grocery3
  $ grep ^c grocery3
7 items start with the letter c

Your PATH

Execution path
In BASH, execution of a
program happens when you
enter the program name. Your
PATH variable keeps you from
having to enter the full path to
the program

Setting your PATH

$ echo $PATH

$ which date

$ which whoami

$ which perl

$ PATH=/home/$USER:$PATH

$ export PATH

Or

$ export PATH=/home/$USER:$PATH

$ echo $PATH

12/4/13 39

awk, sed and tr

awk - allows manipulation of text

sed – stream editor for performing text
modifications based on patterns

12/4/13 40

$ cat hare_tortoise
The hare beat my tortoise

$ cat hare_tortoise | awk ‘{print $1,$5,$3,$4,$2}’
The tortoise beat my hare

$ cat hare_tortoise | sed ‘s/beat/defeated/g’
The hare defeated my tortoise

tr – allows character substitution or translation
$ echo ‘I love Linux!’ | tr “a-z” “A-Z”
I LOVE LINUX!

More Linux Command Basics…Quotes

12/4/13 41

  Linux treats single, double and back quotes in commands differently
  Contents of a set of single quotes are treated as a string:

  Contents of a set of back quotes or back ticks (on the upper
left of the keyboard) are treated as a command and the output
can be assigned to a variable:

  Contents of a set of double quotes will have any included
variables replaced:

$ echo ‘$USER’
$USER

$ echo “The home directory of $USER is $HOME”
The home directory of username is /home/username

$ NOW=`date`; echo $NOW
Thu Mar 21 14:38:13 EDT 2013

Shell Variables

Variable assignment From a file

Arbitrary assignment

$ MYVAR=“Hello World”

$ echo $MYVAR

With program output

$ NOWNOW=`date`

$ echo $NOWNOW

Wed Jan 30 14:12:28 EDT 2013

$ FILE=`cat nonsense.txt`

$ echo $FILE

$ echo $FILE | tr “ “ “\n” \

|sort | uniq

12/4/13 42

Shell Variables

Show all currently assigned
variables

Useful predefined and
important variables

$ printenv
HOSTNAME=helix.nih.gov
TERM=xterm
SHELL=/bin/bash

HISTSIZE=500
SSH_CLIENT=165.112.93.227
49886 22

QTDIR=/usr/lib64/qt-3.3
QTINC=/usr/lib64/qt-3.3/
include

SSH_TTY=/dev/pts/286
HISTFILESIZE=500
USER=jrussler

…

  $USER Your username

  $HOSTNAME System hostname

  $PWD Current directory

  $HOME Home directory

  $SHELL Your shell

  $PATH Command paths

12/4/13 43

find – where are those darn files!

12/4/13 44

  find can be used to locate files based on various criteria:
  $ find path expression/options
  $ find . –name “*.txt”
  $ find /scratch/myusername -mmin -60
  $ find /scratch/myusername –mtime -2
  $ find /scratch/myusername –maxdepth 2 –name “*.txt”
  $ find /scratch/myusername –mindepth 3
  $ find /scratch/myusername –iname “grocery*”
  $ find /scratch/myusername –name “*.bak” –delete
  $ find . –name “*.txt” –exec ls -la {} \;
  $ man find

Cron

Cron: run a job whenever you want
  crontab -l

  crontab –e

--

15 3 * * * ~/script.sh >> ~/output 2> ~/error.log—

Runs “script.sh” at 3:15AM every day of every week of
every month of every year.

* * * * *

  First number is the minute at which to run (0-59)

  Second is the hour (0-23)

  Third is the day of the month (1-31)

  Fourth is the month (1-12)

  Fifth is the day of the week (0-6), 0 is Sunday

12/4/13 45

File system layout

Common directory layout
on a Linux system

Note that /var is frequently
a mount-point to a separate
file system. This is often
true of /home, /tmp and /
usr as well.

On Helix/Biowulf, /home is
on a network file system as
are data directories

12/4/13 46

Logging out

$ exit

12/4/13 47

Resources
  Linux Documentation Project: http://tldp.org/

  Introduction to Linux - A Hands on Guide
  Bash Guide for Beginners

  Helix Web Site: http://helix.nih.gov

12/4/13 48

Helix & Biowulf
  Central scientific compute resources for NIH.
  Managed by Helix Staff, CIT
  Helix is fee-for-service, Biowulf is funded by the NIH

Management Fund.
  Production facilities.
  Cited by ~200 publications in 2012-2013.

helix.nih.gov biowulf.nih.gov

Helix
  A single large shared system.
  128 processors, 1 TB memory
  Typically ~250 people logged on.
  Meant for short jobs, memory-intensive jobs, multi-

processor jobs on a small scale.

Biowulf is a Linux cluster

Biowulf
  20,000+ processor cores
  2500+ nodes
  General-purpose scientific computing
  Not dedicated to any one application type
  Heterogenous

Scientific Applications on Helix/Biowulf
System-installed
User-installed

Versions of programs?
Use the ‘modules’ commands.

Show what programs are installed on the system
module avail

Show what versions of bowtie are available
module avail bowtie

Set up your environment for the latest version of bowtie
module load bowtie

Oops. I actually wanted an older version

module unload bowtie
module load bowtie/2-2.0.6

What modules do I have loaded?

module list

Why would you want to use Biowulf?
  Large	 numbers	 of	 jobs	 (bioinforma1cs	 on	 thousands	 of	
sequences)	

  Large-‐memory	 jobs	 (genome	 assemblies)	
  Parallel	 jobs	 with	 high-‐cpu	 demands	 (e.g.,	 molecular	
dynamics	 on	 256	 cores)	

  Terabytes	 of	 data	 to	 process	

…	 in	 other	 words,	 LARGE	 SCALE	

Unsuitable for Biowulf…(or, why bother?)

  Small	 numbers	 of	 jobs	
  One	 dependent	 job	 aLer	 the	 other	
  Interac1ve	 jobs,	 graphics	 etc.	

…	 in	 other	 words,	 desktops	 can	 be	 prePy	 powerful!	 	 (Helix	
too)	

Hands-On:
Bowtie alignment on Helix

Follow the instructions on the handout.

Is this overwhelming?
Try the Helix Systems web resources.

http://helixweb.nih.gov

Concepts: Interactive vs. Batch

Kinds of Jobs on a Cluster

  Shared-‐memory	 parallel	 apps	 (mul1-‐threaded)	 •  Single-threaded apps

•  Distributed-memory parallel apps

•  Swarm of single-threaded processes •  Swarm	 of	 mul1-‐threaded	 processes	

  Batch System
  Can run single-threaded (1 processor) jobs in large

numbers
  Or multi-processor (parallel) jobs on a single node
  Or real parallel jobs on many nodes

Biowulf

Biowulf Demos:

100 Blat jobs
Single Bowtie job using 16 cores

