
Introduction to Linux

Bash and Basic GNU/Linux and Unix Concepts

History

Late 60’s through 1980’s

 Unix, the result of Bell Labs
research

 Berkeley Software Distribution
(BSD), or Berkeley Unix derived
from Bell Labs’ work due to
government monopoly
agreements

 Led to the BSD family of
operating systems in the 1990’s

History

Richard Stallman, in 1983

 Started the GNU (GNU’s Not Unix!)

project

 Open-sourced versions of standard

suite of Unix utilities found in BSD

 Utilities used in Linux, BSD-derived and

proprietary Unix operating systems

 GNU is also a software license

 All commands in this lesson are from

GNU

History

Linus Torvalds, in 1991

 Released the first version of his

Linux kernel.

 Started as a study in processor

architectures while at the

University of Helsinki, Finland

 Rapidly gathered developers

 In 1992 adopted the GNU license

 Combined the GNU suite of

utilities with a new operating

system kernel (GNU/Linux)

History

 By the 2000’s GNU/Linux starts

to gather main-stream adoption,

especially in research and

academic circles due to

structural similarities with Unix

and BSD

 Gains large market share of

commercial servers

 Becomes usable for desktop

adoption

 Present on gadgets (e.g. Android)

BSD: 1990s - Current

 NetBSD

 OpenBSD

 FreeBSD

 Others…

Popular Distributions

 Debian

 Ubuntu

 Red Hat Enterprise Linux

 Fedora

 CentOS

 Suse Linux

 Linux Mint

Concepts: Kernel

 Operating system “kernel” is the core

software used to “talk” to computer

hardware

 Not usually not “seen” or used directly

 Is a core and modular system of drivers

used to create a standardized

environment for interfacing with

hardware

 Kernel operates in its own memory or

“kernel-space”

Logging In, But First: About OpenSSH

 SSH is the “Secure SHell”

 All traffic over SSH is encrypted

 Developed as a secure alternative

to RSH and Telnet

 SSH supports a file-transfer

subsystem

 SSH can act as an encryption layer

for arbitrary network connections

Logging in

 Log into your workstation

 Launch PuTTY. Under “Host Name (or IP address), type:

 crash.cit.nih.gov

 …and click “Open”

 Enter your username, hit “Enter”

 Then enter the account password

 MacOS:

 Finder -> Applications -> Utilities -> Terminal

 Now type: “ssh username@crash.cit.nih.gov”

 At the prompt, enter the account password

Your Shell

 On log-in the system runs a shell

 A shell is the environment within which you

will interface with the system via commands

 It determines the syntax for complex

command-line operations and shell scripting

 The shell you’re using is called “bash,” the

successor to the venerable “Bourn Shell”

called “sh”

 BASH: “Bourn Again SHell”

 Other popular shells are: tcsh, zsh, dash and

ksh

First commands

[username@crash ~]$

 Type “whoami”, press return – who are you?

 Type “pwd” – where are you?

 Use cd command to navigate to root

 “cd /”

 “pwd”

 “ls –l”

 What do you see?

 The root directory, of course!

Concepts: The File System

 Unix and Unix-like file systems are arranged in a tree
structure, all with the same bottom level, called “root” (/)

 Unlike Windows there are no drives, drive letters or any
separate conceptual “space” for storage additional
hardware

 New hardware will come in the form of a “file system”
attached (mounted) to some arbitrary point in the
directory structure

 To demonstrate, we will eventually get our hands dirty:

Concepts: Files

In Unix, and by extension, Linux,
everything is a file. Meaning everything can
be interfaced via the file system(s). Things
that are files include but are not limited to:

 Files: text, data, documents, traditional
files

 Directories: directories are special text
files that list a bunch of other files

 Devices: all disks, video hardware, audio
hardware, processors, memory, USB
ports – all hardware can be interfaced
via files (usually in /dev)

 Processes: all running processes can be
“seen” via the file system (in /proc)

Directory Structure

 /etc system files, configuration

 /home home directories

 /usr operating system applications

 /lib Libraries needed by the system

 /var Logs, databases and other variable length stuff

 /opt 3rd party applications

 /bin bare essential commands

 /sbin administrative commands

 /boot OS Kernels

 /tmp temporary space

 /proc Running processes

 /dev hardware devices

File system layout

Common directory layout

on a Linux system

Note that /var is frequently

a mount-point to a separate

file system. This is often

true of /home, /tmp and

/usr as well.

On Helix/Biowulf, /home is

on a network file system as

are data directories

The “ls” command: List Files

 “ls” lists files and directories

 Like almost all commands, it can take a number of “flags”

as arguments to change the behavior the program

 Try “ls -a”, “ls -la”, now “ls --help”

 Try “ls -lt /etc”

 What am I looking at?

 Now: “man ls”

 Scroll with arrow keys

 “q” to quit

Long List Output Explained (a little)

 From left to right:

• Unix permissions

• Hard links

• Owner

• Group ownership

• File size in bytes

• Modification date

• Name of file

Special Files:

• . is the current working directory

• .. is the “parent” directory, one level “back”

-rw-r--r--. 1 root root 49 Apr 27 2011 system-release-cpe

drwxr-xr-x. 2 root root 4096 Dec 3 2009 terminfo

-rw-r--r-- 1 root root 45 May 20 2009 Trolltech.conf

drwxr-xr-x. 4 root root 4096 Aug 10 11:08 udev

-rw-r--r--. 1 root root 473 Jan 15 2010 updatedb.conf

-rw-r--r--. 1 root root 1962 Apr 19 2010 vimrc

-rw-r--r--. 1 root root 1962 Apr 19 2010 virc

-rw-r--r--. 1 root root 3001 Mar 21 2011 warnquota.conf

-rw-r--r--. 1 root root 4479 May 10 2010 wgetrc

drwxr-xr-x 2 root root 4096 Aug 15 10:23 wpa_supplicant

drwxr-xr-x. 5 root root 4096 Aug 15 10:23 X11

drwxr-xr-x. 4 root root 4096 Aug 15 10:23 xdg

drwxr-xr-x. 2 root root 4096 Aug 10 11:11 xinetd.d

drwxr-xr-x. 2 root root 4096 Aug 10 11:04 xml

-rw-r--r--. 1 root root 585 Jun 24 2010 yp.conf

drwxr-xr-x. 5 root root 4096 Oct 26 10:23 yum

-rw-r--r-- 1 root root 813 Oct 17 16:37 yum.conf

drwxr-xr-x. 2 root root 4096 Oct 17 16:37 yum.repos.d

Change Directory: cd

 The “cd” command: “cd”
(change directory) is used to
do just that, try moving to
directories and see what’s in
them:

 What just happened with
that last “cd” command?

 Now poke around the
system a bit. Don’t be shy.
Go wherever you want.

 Tab auto-completion in bash

$ cd /home/username

$ ls –l

[output]

$ cd ..

$ pwd

/home

$ cd /etc

$ ls –l

[output]

$ cd /home/username

$ cd /dev

$ ls –l

[output]

$ cd

$ pwd

More Directory Changing

 The starting “/” in the
directory argument
explicitly spells out a path
name

 No leading “/” means you
are specifying a relative
path, meaning the
directory “local” is in our
current working directory

 “~” is a special character
that is short-hand for
“/home/username”

$ cd /home/username

Absolute and relative

$ cd /usr

$ cd local/share

Using ~

$ cd ~/mystuff

$ cd /home/username/mystuff

What is that file?

File Apropos

Apropos will search

documentation for keywords. If

you don’t know what man page

to look at, use apropos to search

for potentially related material

$ file showvar

$ file noread.txt

$ file read-only.txt

$ apropos editor

$ apropos “text editor”

Files: create and delete them

Create files and dirs Remove files and dirs

$ cd

$ touch file

$ ls –l

$ mkdir mydir

$ mkdir –p 2011/forms/tax

$ ls -l

$ rm ~/file

$ touch ~/file

$ chmod u-rwx ~/file

$ rm ~/file

$ rm –f ~/file

$ rmdir ~/mydir

$ rmdir ~/2011

$ rm –r ~/2011

Dangerous:

$ rm –rf ~/2011

Moving/Copying Files

Move (mv)

There is no “rename” in

Unix/Linux. “mv” does the

job:

Copy (cp)

$ touch file

$ mv file newfile

$ mkdir –p 2011/forms/tax

$ mv 2011 2012

$ cp newfile file

$ cp 2012 2011

error

$ cp –r 2012 2011

Archival copy:
$ cp –a 2011 2012

Links

Hard links (never use)

Links a file name to an inode. Several file

names can be “linked” to the same data

on disk

Symbolic links (use these)

$ mkdir /tmp/$USER

$ cd /tmp/$USER

$ dd if=/dev/urandom \

count=1 | base64 > file

$ cat file

$ ln file file2

$ rm file

$ cat file2

$ ln file2 file

$ rm file2

$ ln –s file file2

$ ls –l

$ ln file file3

$ ln file2 file4

$ stat file

$ stat file3

$ stat file2

$ stat file4

Intro to POSIX Users and Groups

Users and Groups and

Permissions:
 Users are associated with a

number (UID) that the system

uses internally

 Users can be real people

 Users can be system entities

 Users can be herded via groups

Permissions triplets

Linux Permissions as displayed in a long-listing

-rwxr-x---.

Permissions triplets

 1st char: File Type

 2nd char: Owner readable flag

 3rd char: Owner writeable flag

 4th char: Owner executable flag

 5th char: Group readable flag

 6th char: Group writeable flag

 7th char: Group executable flag

 8th char: World readable flag

 9th char: World writeable flag

 10th char: World executable flag

 11th char: SELinux attributes present

Permissions described:

File Type: Permissions

• “-” regular file

• “d” directory

• “l” symlink

• “b” block device

• “c” character device

• “p” named pipe

• “s” socket

• “r” read

• “w” write

• “x” execute

Special values:

• “x” executable

• “s” or “t”: executable and
setuid/setgid/sticky

• “S” or “T”: setuid/setgid
or sticky, but not executable.

File Permissions: chmod

Read Permissions Execute Permissions

$ cd ~

$ ls –l

$ cat read-write.txt

$ cat noread.txt

$ chmod u+r noread.txt

$ cat noread.txt

$ chmod u-r noread.txt

$ cat noread.txt

$./hostname

$ chmod u-x hostname

$./hostname

$ chmod u+x hostname

$./hostname

$ chmod u-r hostname

$./hostname

Print to terminal

Use cat to output file

contents to the

terminal:

Use echo to output
arbitrary text to the
terminal:

$ cat read-only.txt

$ cat read-only.txt \

read-write.txt

$ echo ‘Hello World!’

$ echo without quotes

Output Redirection to Files

Truncate and redirect: Append files:

$ cat read-write.txt > file

$ cat read-write.txt \

read-only.txt > file

$ cat file

$ echo ‘Hi there!’ > file

$ cat file

$ echo ‘Hi yourself!’ >> file

$ cat read-write.txt >> file

$ cat read-only.txt >> file

$ cat file

Displaying/Editing Files

“more” or “less” Text editors:

$ more file

$ less file

$ nano file

(“Ctrl-x” to quit, “n” to

not save changes)

Good choices for editing in

a terminals are:

 “vim” (vi-improved)

 “emacs” (Editor MACroS)

Good simple editors:

 pico (pine composer)

 nano (pico clone)

Viewing file contents

“wc” (word count) “grep” (ed: g/re/p)

$ wc read-only

 39 37 420 read-only.txt

$ wc --help

$ wc –l read-only.txt

$ wc –w read-only.txt

$ wc –m read-only.txt

$ grep cat read-only.txt

$ grep dog read-only.txt

$ grep oc read-only.txt

$ grep ^oc read-only.txt

$ grep oc$ read-only.txt

$ grep ^oc$ read-only.txt

Grep is a powerful tool. Use
it.

$ grep --help

$ man grep

Sorting

Sort command

“sort” can be used to read a

file, sort the contents and

output to the terminal

$ sort read-only.txt

$ sort –r read-only.txt

$ sort --help

Pipes (redirect to other processes)

Much like you can write

output to files, you can write

output to other commands

using pipes “|”

$ cat read-only file | sort | uniq

Write to a file at the end:

$ cat read-only.txt file |grep ^s | sort | uniq > newfile

Putting commands together

Read in from a file with input

redirection, do some stuff and output

to another file:

$ sort -r < newfile | grep -i ^s > newerfile

Standard Error:

$ grep –i ^a notthere > error

$ cat error

$ grep –i ^a notthere &> error

$ cat error

 Program first, then

arguments, then any

file I/O

 Most programs will

read from standard

input (stdin) if no file

is specified in

arguments

 In addition to

standard output there

is standard error

(stderr)

Shell Variables

Variable assignment From a file

Arbitrary assignment

$ MYVAR=“Hello World”

$ echo $MYVAR

With program output

$ NOWNOW=`date`

$ echo $NOWNOW

$ FILE=`cat file`

$ echo $FILE

$ echo $FILE | tr “ “ “\n” \

|sort | uniq

Shell Variables

Show all currently assigned

variables
Useful predefined and
important variables

% env

HOSTNAME=helix.nih.gov

TERM=xterm

SHELL=/bin/bash

HISTSIZE=500

SSH_CLIENT=165.112.93.227
49886 22

QTDIR=/usr/lib64/qt-3.3

QTINC=/usr/lib64/qt-
3.3/include

SSH_TTY=/dev/pts/286

HISTFILESIZE=500

USER=jrussler

…

 $USER Your username

 $HOSTNAME System hostname

 $PWD Current directory

 $HOME Your home dir

 $SHELL Your shell

 $PATH Command paths

Variable Scope

Variables are available only to

your immediate shell

environment by default.

Exporting a variable makes

the variable available to sub

processes

$ MYVAR=“This is my var”

$ echo $MYVAR

$./showvar MYVAR

$ MYVAR=“exported”

$./showvar MYVAR

$ export MYVAR

$./showvar MYVAR

Or

$ export MYVAR=“exported”

$./showvar MYVAR

Your PATH

Execution path

In BASH, execution of a

program happens when you

enter the program name. Your

PATH env variable keeps you

from having to enter the full

path to the program

Setting your PATH

$ echo $PATH

$ which date

$ which whoami

$ which perl

$ PATH=/home/$USER:$PATH

$ export PATH

Or

$ export PATH=/home/$USER:$PATH

$ showvar PATH

Loops

“For” loops will traverse

space-delimited data

Loop over the output of

the seq command:

$ FILE=`cat newfile`

$ for n in $FILE

> do

> echo $n

> done

$ for n in `cat file`; do

> echo $n

> done

$ seq 1 10

$ t=1

$ for n in `seq 1 10`; do

> t=`expr $t + $n`

> done

$ echo $t

$ t=1

$ for n in `seq 1 10`; do

> t=`expr $t * $n`

> done

What is truth?

Equality: if, then, else, fi Existence

$ BAD=“good”

$ if [“$BAD” = “good”]

> then

> echo “true”

> fi

$ if [“$BAD” = “no good]

> then

> echo “true”

> else

> echo “false”

> fi

$ if [-f $HOME/showvar]

> then

> echo true

> fi

$ if [-d $HOME]

> then

> echo true

> fi

Scripts: Putting Them Together

Sample Shell script
$ nano writeNBlocks.sh

#!/bin/bash

if [! $1]; then

 echo "Please specify a block length"

 exit 1

fi

BLOCKS=$1

TARGET="/tmp/${USER}_file"

:> "$TARGET"

for n in `seq 1 $BLOCKS`; do

 dd if=/dev/urandom bs=512 count=1024 >> "$TARGET“ 2> /dev/null

done

echo –n "$BLOCKS blocks written with fingerprint: “

sha1sum $TARGET

exit 0

$ chmod u+x writeNBlocks.sh

Processes

Background processes Show processes

Using sleep:

$ sleep 5

Use an “&” to background the

process

$ sleep 5 &

[1]+ Done sleep 5

Warning: Backgrounded

processes will die when you log

out of your session

Show your processes:
$ ps

$ ps -f

$ sleep 25 &

$ ps -f

$ ps –f --forest

Show all processes:
$ ps –e

$ ps –ef --forest

$ man ps

Processes

Detach and Reattach

processes

Kill a process

$ sleep 10 &

$ fg

$ sleep 300

[ctrl–z] (process is stopped)

$ bg

$ ps –f

$ fg

$ sleep 300

[ctrl-Z]

$ bg

$ ps

 PID TTY TIME CMD

 6686 pts/0 00:00:03 bash

 8298 pts/0 00:00:00 sleep

 8299 pts/0 00:00:00 ps

(find the PID of the process you want

to kill)

$ kill 8298

Processes: kill them

“kill” only requests that

the program exit. Use a

signal 9 to force it to exit

$ sleep 300

[ctrl-Z]

$ ps

 PID TTY TIME CMD

 6686 pts/0 00:00:03 bash

 8298 pts/0 00:00:00 sleep

 8299 pts/0 00:00:00 ps

(find the PID of the process you want to kill)

$ kill -9 8298

 The kill command is
slightly misnamed,
what it actually does is
send a signal to a
process

 Most signals are
interpreted by the
application being
signaled and thus
behavior is consistent
only by convention

 Using signal 9 is
dangerous if used
indiscriminately

Processes: Make them Nicer

“nice” a process. This is useful for log-running,

intensive processes that you don’t want to impact

the system. Values for “n” can be between 0

(highest priority) and 19 (lowest priority).

% nice –n 10 cat /dev/urandom > /dev/null &

% top –u `whoami`

…

% renice –n 15 –p [pid of “cat” command]

Top: everything you wanted to know…

By default, top will produce continuous output about

running processes

$ top

top - 16:19:54 up 28 days, 9:07, 255 users, load average: 32.18, 32.79, 33.22

Tasks: 4749 total, 8 running, 4733 sleeping, 7 stopped, 1 zombie

Cpu(s): 9.6%us, 5.8%sy, 6.0%ni, 78.2%id, 0.2%wa, 0.0%hi, 0.2%si, 0.0%st

Mem: 1058656848k total, 955041356k used, 103615492k free, 79064k buffers

Swap: 67108856k total, 547376k used, 66561480k free, 89619996k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

120202 johanesb 39 19 235m 180m 1432 R 96.4 0.0 170:21.86 merlin

252158 liqingli 39 19 58496 26m 756 S 95.0 0.0 17141:15 moe

170176 bozser 33 13 407m 117m 2588 S 60.1 0.0 62:30.33 ascp

218983 jrussler 20 0 18532 4704 872 R 22.3 0.0 0:00.38 top

127988 elliottm 39 19 223m 3544 1064 S 16.8 0.0 782:02.42 sshd

198816 wenxiao 20 0 4280 792 416 D 14.0 0.0 24:50.19 gzip

File system (disk) Space

Check file systems (df)

$ df –l

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/mapper/vg_helix-lv_root

 51606140 9278188 39706512 19% /

tmpfs 529328424 5676 529322748 1% /dev/shm

…

$ df –lh

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/vg_helix-lv_root

 50G 8.9G 38G 19% /

tmpfs 505G 5.6M 505G 1% /dev/shm

/dev/sda2 485M 142M 318M 31% /boot

/dev/sda1 200M 256K 200M 1% /boot/efi

/dev/mapper/vg_helix-lv_tmp

 50G 613M 47G 2% /tmp

Directory size

Estimate file space use (du) Check file system sizes

$ cd ~

Estimate a file:

$ du showvar

Summary:

$ du -s fftw-3.3

Summary in megabytes:

$ du -sm fftw-3.3

Default behavior:

$ du

$ df –l

Human-readable:

$ df –lh

All, including network file

systems:

$ df –h | less

Checking Quotas on Helix/Biowulf

“checkquota”

 The checkquota command will query all network storage
devices to find the applicable quota(s) for your user

 This command is specific to SCB’s systems and is not available
to Linux in general since it relies on information that is site-
specific to this infrastructure.

$ checkquota

Mount Used Quota Percent Files

/data: 94.2 GB 200.0 GB 47.12% 70424

/home: 5.2 GB 8.0 GB 64.71% 133607

mailbox: 347.9 MB 1.0 GB 33.98%

File Transfer

SCP, SFTP and clients Clients

 SCP and SFTP are file

transfer protocols that

run over SSH, the same

protocol that you used to

log in

 They are very secure and

encrypt both the log-in

and content of any

transfer

Linux/MacOS:

 “scp” secure copy

 “sftp” secure FTP

 “fuze-ssh” (Linux only)

Windows:

 WinSCP

 Filezilla

 Swish

WinSCP

• Start WinSCP

• Click “New”

• Enter the host name

(i.e.: crash.cit.nih.gov)

• Fill in user name

• Leave password blank

• Click Login

• If this is the first time

you’ve connected to this

host, you’ll have to

accept the host’s key

WinSCP Interface

• Left window is your

local workstation, right

window is the remote

host

• Drag and drop files

• Navigate like a

traditional explorer

interface

Using OpenSSH (Unix/Linux/MacOS)

SCP files via command

line:

Using SFTP

Transfer a file

$ scp helix.nih.gov:/tmp/file ~

Recursive transfer (whole directory)

$ scp –r helix.nih.gov:/tmp/dir ~

From local host to remote.

$ scp ~/file helix.nih.gov:/tmp/

As usual

$ scp --help

$ man scp

$ sftp helix.nih.gov

sftp> cd /tmp

sftp> get file

Fetching /tmp/file to file

/tmp/file 100% 2048KB 2.0MB/s 00:00

sftp> put file newfile

Uploading file to /tmp/file

file 100% 2048KB 2.0MB/s 00:00

sftp> exit

$ man sftp

File Transfer (Helix/Biowulf Specific)

Network drive (Windows) Network Drive (MacOS)

Helixdrive is available to users

with Helix accounts:

 Open “Computer” from the

start menu

 Click “Map Network Drive”

 Folder:

helixdrive.nih.gov/username

 Click “Connect using different

credentials”

 Click Finish

 Enter Helix username and

password

 Menu -> Go -> Connect to

Server

 Server Address:

smb://helixdrive.nih.gov/usern

ame

 Click “Connect”

 Check “Registered User”

 Enter Helix username and

password

Changing your account info

Passwords

If you’re on a managed system, you’ll

need to change your password every

now and then. Use the passwd command

and observe password requirements

Shells

You may find that you want to use a

different shell (remember shells?), use

chsh to do this.

% passwd

Changing password for user jrussler.

Current Password:

New password:

Retype new password:

passwd: all authentication tokens

updated successfully.

% chsh --list-shells

/bin/sh

/bin/bash

/sbin/nologin

/bin/tcsh

/bin/csh

/bin/zsh

% chsh -s /bin/zsh

Changing shell for jrussler.

Password:

Shell changed.

Cron

Cron: run whenever Anatomy

 Crontab –e

--

15 3 * * * ~/script.sh >> \

~/output 2> ~/error.log

--

Runs “script.sh” at 3:15AM every

day of every week of every month

of every year.

* * * * *

 First number is the

minute at which to

run (0-59)

 Second is the hour

(0-23)

 Third is the day of

the month (1-31)

 Fourth is the month

(1-12)

 Fifth is the day of

the week (0-7), 0

and 7 are Sunday

Logging out

$ exit

Resources

 Linux Documentation Project: http://tldp.org/

 Introduction to Linux - A Hands on Guide

 Bash Guide for Beginners

 Helix Web Site: http://helix.nih.gov

http://tldp.org/
http://tldp.org/
http://tldp.org/
http://tldp.org/
http://tldp.org/
http://tldp.org/
http://helix.nih.gov/

