

STAR manual
(2.2.0)

Alex Dobin (dobin@cshl.edu)

Nov 19, 2012

1: Installation ... 2

2: Before running STAR ... 2

3: Generating genomes .. 2

4: Running mapping jobs .. 3

5: Crucial input parameters ... 3

6: Loading genome into shared memory ... 6

7: Output .. 6

mailto:dobin@cshl.edu

2

1: Installation

Unzip/tar STAR_x.x.x.tgz file into a directory of your choice < STARsource >, cd < STARsource > and run
make. The source code will be compiled and the STAR executable will be generated. Standard GNU C++
distribution is required for compilation. The pre-compiled executable STAR, included in the source directory,
should work on any x86_64 Linux machine.

The compilation of STAR was tested on the following Amazon EC2 servers, the fllowing commands were
used to install the necessary packages:

1.1: Ubuntu 12.04.1 LTS
 sudo apt-get update

 sudo apt-get install g++

 sudo apt-get install make

1.2: Red Hat Enterprise Linux 6.3, CentOS 6.2
 sudo yum update

 sudo yum install make

 sudo yum install gcc-c++

 sudo yum install glibc-static

1.3: SUSE Linux Enterprise Server 11
 sudo zypper update

 sudo zypper in gcc gcc-c++

2: Before running STAR
You need the following items before you can run STAR:
1. STAR executable: see installation
2. Genome files: download standard genomes from STAR web-site, or generate your own genomes using
(see Generating genomes section).
3. Sequencing .fastq files: standard .fastq files (e.g. Illumina .fastq output files) or .fasta files.

Each STAR run should be made from a fresh working directory. All the output files are stored in the working
directory. The output files will be overwritten without a warning every time you run STAR.

3: Generating genomes
From a fresh directory, run

3

/pathToStarDir/STAR --runMode genomeGenerate --genomeDir
/path/to/GenomeDir --genomeFastaFiles /path/to/genome/fasta1
/path/to/genome/fasta2 --runThreadN <n> …

Reference sequences (henceforth called “chromosomes”) will be collected from the all the speceified .fasta
files. Generated genome files comprise binary genome sequence, suffix arrays, text chromosome names and
lengths information. You can rename the chromosomes’ names in the chrName.txt keeping the order of the
chromosomes in the file: the names from this file will be used in all output alignment files (such as .sam).
The tabs are not allowed in chromosomes’ names, and spaces are not recommended. For each genome these
files are stored in a separate directory /path/to/GenomeDir that has to be supplied as a parameter to the
alignment runs. You can use multiple threads by specifying --runThreadN <n>.

4: Generating genomes with a splice junctions’ database
STAR can use a splice junctions’ database to improve accuracy of the mapping. The splice junctions’ loci
have to be supplied at the genome/suffix array generation step. The following two parameters have to be
specified at the genome generation step:

--sjdbFileChrStartEnd <FileName>: the file with annotated introns loci in a three-column
format:

 Chr \tab\ Start \tab\ End \tab\ Strand(+or-)
where Start and End are first and last bases of the introns (1-based chromosome coordinates).

--sjdbOverhang <N>: the length of the "overhang" on each side of a splice junctions. Ideally

it's equal to (MateLength - 1).

At the mapping stage, --sjdbScore <N> (=2 by default) provides extra alignment score for alignments
that cross database junctions. If this score is positive, it will bias the alignment toward annotated junctions.

5: Running mapping jobs
From a fresh working directory run:
/pathToStarDir/STAR --genomeDir /path/to/GenomeDir --readFilesIn
/path/to/read1 [/path/to/read2] --runThreadN <n> --<inputParameterName>
<input parameter value(s)> …

All input parameters are entered as --<inputParameterName> <input parameter value(s)>. If a parameter
allows several values, the values are separated by spaces. For advanced usage, parameters can also be input
from config files Parameters1.in and Parameters2.in in the working directory. In these files each parameter
with its values occupies one line without preceding dashes (--). There are four levels of input parameters,
Default, Parameters1.in, Parameters2.in, Command line; each level overrides the previous ones.

6: Crucial input parameters
All input parameters and their default values are briefly described in the parametersDefault file in the STAR
source directory. The default parameters are typical for mapping 2x76 or 2x101 Illumina reads to the human
genome.

4

6.1: The following parameters are crucial for the STAR mapping runs:

PARAMETER DEFAULT
 NAME VALUE
genomeDir GenomeDir/
 string: path to the directory where genome files are stored

genomeLoad LoadAndKeep
 mode of shared memory usage for the genome files (see Loading genome
into shared memory)

readFilesIn Read1 Read2

string(s): paths to .fastq or .fasta files that contain input read1
(and, if needed, read2)

runThreadN 1
 int>0: the number of threads to use

6.2: The following parameters control the filtering of the output
alignments:

6.2.1: To filter by mapped length and alignment score:
outFilterScoreMin 0
 int: alignment will be output only if its score is higher than
this value

outFilterScoreMinOverLread 0.66
 float: outFilterScoreMin normalized to read length (sum of
mates' lengths for paired-end reads)

outFilterMatchNmin 0
 int: alignment will be output only if the number of matched bases
is higher than this value

outFilterMatchNminOverLread 0.66
 float: outFilterMatchNmin normalized to read length (sum of
mates' lengths for paired-end reads)

5

6.2.2: To control the output of multi-mappers, use the following
parameters:
outFilterMultimapScoreRange 1
int: the score range below the maximum score for multimapping alignments

outFilterMultimapNmax 10
int: read alignments will be output only if the read maps fewer than this
value, otherwise no alignments will be output

6.2.3: To control the number of mismatches per read pair, use:
outFilterMismatchNmax 10
int: alignment will be output only if it has fewer mismatches than this
value

outFilterMismatchNoverLmax 0.3
int: alignment will be output only if its ratio of mismatches to mapped
length is less than this value

6.2.4: To filter out alignments containing non-canonical junctions
use:
outFilterIntronMotifs None
 string: filter alignment using their motifs
 None : no filtering
 RemoveNoncanonical : filter out
alignments that contain non-canonical junctions
 RemoveNoncanonicalUnannotated : filter
out alignments that contain non-canonical unannotated junctions when
using annotated splice junctions database. The annotated non-canonical
junctions will be kept.

6.2.5: To set maximum intron size:
--alignIntronMax is the max intron size for a splice that occurs inside each mate, i.e. the one recorded
as xxxN in the .sam CIGAR.
-- alignMatesGapMax is the maximum genomic gap between the mates, i.e. inner distance between
the right end of the left mate and left side of the right mate. Note that this gap is not truly an intron, and it
could contain several introns. If the (insert-2*mate) of the library is not very large (< typical exon size), you
can assume that there is no more than one intron in the unsequenced RNA between the mates, and so you can
use alignMatesGapMax=alignIntronMax However, for longer reads it might be necessary to use
alignMatesGapMax>alignIntronMax to allow more than one intron in the genomic gap between the mates.

6

7: Loading genome into shared memory
The --genomeLoad parameter controls how the genome is loaded into memory. If
genomeLoad=LoadAndKeep, STAR loads the genome as a standard Linux shared memory piece. Befroe
loading the genome, STAR will check if the genome has already been loaded into the shared memory. The
genomes are identified by their unique directory paths. If the genome has not been loaded, STAR job will
load it and will keep it in memory even after STAR job itself finishes. The genome will be shared with all the
other STAR instances. You can remove the genome from the shared memory running STAR with
genomeLoad=Remove. The shared memory piece will be physically removed only after all STAR jobs
attached to it complete. If genomeLoad=LoadAndRemove, STAR will load genome in the shared memory,
and mark it for removal, so that the genome will be removed from the shared memory once all STAR jobs
using it exit. If genomeLoad=LoadAndExit, STAR will load genome in the shared memory, and immediately
exit without performing any alignment, keeping the genome loaded in the shared memory for the future runs.

If you need to check or remove shared memory pieces manually, use the standard Linux command ipcs and
ipcrm. If the genome residing in shared memory is not used for a long time it may get paged out of RAM
which will slow down STAR runs considerably. It is strongly recommended to regularly re-load (i.e. remove
and load again) the shared memory genomes.

If genomeLoad=NoSharedMemory, shared memory is not used. This option is recommended if the shared
memory is not configured properly on your server.

Many standard Linux distributions do not allow large enough shared memory blocks. You can fix this issue if
you have root privileges, or ask you system administrator to do it. To enable the shared memory modify or
add the following lines to /etc/sysctl.conf:
kernel.shmmax = 31000000000
kernel.shmall = 31000000000
Then run:
> /sbin/sysctl -p
This will increase the allowed shared memory blocks to ~31GB, enough for human or mouse genome.

8: Output

8.1: Log files
Log.out - log files with some information about the run recorded.

Log.progress.out - job progress with the number of processed reads, % of mapped reads etc., updated every
~1 minute

Log.final.out – final mapping statistics

8.2: SAM alignments
Aligned.out.sam - alignments in standard SAM format.

The number of loci Nmap a read maps to (multi-mapping) is given by NH:i: field.

7

The mapping quality MAPQ (column 5) is 255 for uniquely mapping reads, and int(-log10(1-1/Nmap)) for
multi-mapping reads. This scheme is same as the one used by Tophat and is compatible with Cufflinks.

For multi-mappers, all alignments except one are marked with 0x100 (secondary alignment) in the FLAG
column 2. The un-marked alignment is either the best one (i.e. highest scoring), or is randomly selected from
the alignments of equal quality.

8.2.1: Standard SAM attributes
With default --outSAMattributes Standard option the following SAM attributes will be generated:

Column 12: NH: number of loci a read (pair) maps to

Column 13: IH: alignment index for all alignments of a read

Column 14: aS: alignment score

Column 15: nM: number of mismatches (does not include indels)

8.2.2: Extra SAM attrbiutes
If --outSAMattributes All option is used, the following additional attributes will be output:

Column 16: jM:B:c,M1,M2,… Intron motifs for all junctions (i.e. N in CIGAR): 0: non-canonical; 1:
GT/AG, 2: CT/AC, 3: GC/AG, 4: CT/GC, 5: AT/AC, 6: GT/AT. If splice junctions database is used, and a
junction is annotated, 20 is added to its motif value.

Column 17: jI:B:I,Start1,End1,Start2,End2,… Start and End of introns for all junctions (1-
based)

Note, that samtools 0.1.18 or later have to be used with these extra attributes.

8.2.3: XS SAM strand attribute for Cufflinks/Cuffdiff
If you have un-stranded RNA-seq data, and wish to run Cufflinks/Cuffdiff on STAR alignments, you will
need to use --outSAMstrandField intronMotif option, which will generate the XS strand
attribute for all alignments that contain splice junctions. The spliced alignments that have undefined strand
(i.e. containing only non-canonical junctions) will be suppressed.

If you have stranded RNA-seq data, this option is not required – instead, you need to use the correct library
option --library-type options for Cufflinks runs. For example, --library-type fr-
firststrand should be used for the “standard” dUTP protocol.

It is recommended to remove the non-canonical junctions for Cufflinks runs using –
--outFilterIntronMotifs RemoveNoncanonical
filter out alignments that contain non-canonical junctions

OR

--outFilterIntronMotifs RemoveNoncanonicalUnannotated

8

filter out alignments that contain non-canonical unannotated junctions
when using annotated splice junctions database. The annotated non-
canonical junctions will be kept.

8.3: Splice junctions
SJ.out.tab - high confidence collapsed splice junctions in tab-delimited format. Only junctions supported by
uniquely mapping reads are reported.

 Column 1: chromosome

Column 2: first base of the intron (1-based)

Column 3: last base of the intron (1-based)

Column 4: strand

Column 5: intron motif: 0: non-canonical; 1: GT/AG, 2: CT/AC, 3: GC/AG, 4: CT/GC, 5: AT/AC, 6: GT/AT

Column 6: 0:unannotated, 1:annotated if splice junctions database is used.

Column 7: number of uniquely mapping reads crossing the junction

Column 8: reserved

Column 9: maximum spliced alignment overhang

The filtering for this output file is controlled by the following parameters (see parametersDefault for
description) --outSJfilterOverhangMin, -- outSJfilterCountUniqueMin, --
outSJfilterDistToOtherSJmin

9

9: All input parameters
The most up-to-date input parameters and their defaults can be found in the parametersDefault file in the
STAR source directory.

PARAMETERS

parametersFiles -

 string: name of a user-defined parameters file, "-": none. Can only
be defined on the command line.

RUN PARAMETERS

runMode alignReads

 string: type of the run: alignReads ... map reads

 genomeGenerate ... generate genome files

runThreadN 1

 int: number of threads to run STAR

GENOME PARAMETERS

genomeDir ./GenomeDir/

 string: path to the directory where genome files are stored (if
runMode!=generateGenome) or will be generated (if runMode==generateGenome)

genomeLoad LoadAndKeep

 mode of shared memory usage for the genome files

 string: LoadAndKeep ... load genome into shared and
keep it in memory after run

 LoadAndRemove ... load genome into shared but
remove it after run

 LoadAndExit ... load genome into shared
memory and exit, keeping the genome in memory for future runs

10

 Remove ... do not map anything, just
remove loaded genome from memory

 NoSharedMemory ... do not use shared memory,
each job will have it's own private copy of the genome

GENOME GENERATION PARAMETERS

genomeFastaFiles -

 fasta files with genomic sequence for genome files generation, only
used if runMode==genomeGenerate

 string(s): path(s) to the files from the working directory (separated
by spaces)

genomeChrBinNbits 18

 int: =log2(chrBin), where chrBin is the size of the bins for genome
storage: each chromosome will occupy an integer number of bins

genomeSAindexNbases 14

 int: length (bases) of the SA pre-indexing string. Typically between
10 and 15. Longer strings will use much more memory, but allow faster
searches.

genomeSAsparseD 1

 int>0: suffux array sparsity, i.e. distance between indices: use
bigger numbers to decrease needed RAM at the cost of mapping speed
reduction

READ PARAMETERS

readFilesIn Read1 Read2

 string(s): paths to files that contain input read1 (and, if needed,
read2)

readMatesLengthsIn NotEqual

11

 string: Equal/NotEqual - lengths of names,sequences,qualities for
both mates are the same / not the same. NotEqual is safe in all
situations.

clip3pNbases 0

 int(s): number(s) of bases to clip from 3p of each mate. If one value
is given, it will be assumed the same for both mates.

clip5pNbases 0

 int(s): number(s) of bases to clip from 5p of each mate. If one value
is given, it will be assumed the same for both mates.

clip3pAdapterSeq -

 string(s): adapter sequences to clip from 3p of each mate. If one
value is given, it will be assumed the same for both mates.

clip3pAdapterMMp 0.1

 double(s): max proportion of mismatches for 3p adpater clipping for
each mate. If one value is given, it will be assumed the same for both
mates.

clip3pAfterAdapterNbases 0

 int(s): number of bases to clip from 3p of each mate after the
adapter clipping. If one value is given, it will be assumed the same for
both mates.

LIMITS

limitGenomeGenerateRAM 31000000000

 int>0: maximum available RAM (bytes) for genome generation, in
GigaBytes

limitIObufferSize 150000000

 int>0: max available buffers size (bytes) for input/output, per
thread

12

OUTPUT

outFileNamePrefix ./

 string: output files name prefix (including full or relative path).
Can only be defined on the command line.

outStd Log

 string: which output will be directed to stdout (standard out)

 Log : log messages

 SAM : alignments in .sam format (which
normally are output to Aligned.out.sam file), normal standard output will
go into Log.std.out

outSAMmode Full

 string: mode of SAM output None : no SAM output

 Full : full SAM output

outSAMstrandField None

 string: Cufflinks-like strand field flag None : not used

 intronMotif : strand
derived from the intron motif. Reads with inconsistent and/or non-
canonical introns are filtered out.

outSAMattributes Standard

 string: which SAM attributes to output?

 Standard : NH, HI, AS, nM attributes

 All

 None

outSAMunmapped None

 string: output of unmapped reads

 None : no output

 Within : output unmapped reads within
the main SAM file

13

OUTPUT FILTERING

outFilterMultimapScoreRange 1

 int: the score range below the maximum score for multimapping
alignments

outFilterMultimapNmax 10

 int: read alignments will be output only if the read maps fewer than
this value, otherwise no alignments will be output

outFilterMismatchNmax 10

 int: alignment will be output only if it has fewer mismatches than
this value

outFilterMismatchNoverLmax 0.3

 int: alignment will be output only if its ratio of mismatches to
mapped length is less than this value

outFilterScoreMin 0

 int: alignment will be output only if its score is higher than this
value

outFilterScoreMinOverLread 0.66

 float: outFilterScoreMin normalized to read length (sum of mates'
lengths for paired-end reads)

outFilterMatchNmin 0

 int: alignment will be output only if the number of matched bases is
higher than this value

outFilterMatchNminOverLread 0.66

 float: outFilterMatchNmin normalized to read length (sum of mates'
lengths for paired-end reads)

outFilterIntronMotifs None

14

 string: filter alignment using their motifs

 None : no filtering

 RemoveNoncanonical : filter out
alignments that contain non-canonical junctions

 RemoveNoncanonicalUnannotated : filter
out alignments that contain non-canonical unannotated junctions when
using annotated splice junctions database. The annotated non-canonical
junctions will be kept.

OUTPUT FILTERING: SPLICE JUNCTIONS

outSJfilterOverhangMin 30 12 12 12

 4*int: minimum overhang length for splice junctions on both sides
for: (1) non-canonical motifs, (2) GT/AG motif, (3) GC/AG motif, (4)
AT/AC motif. -1 means no output for that motif

outSJfilterCountUniqueMin 3 1 1 1

 4*int: minimum read count per junction for: (1) non-canonical motifs,
(2) GT/AG motif, (3) GC/AG motif, (4) AT/AC motif. -1 means no output for
that motif

outSJfilterDistToOtherSJmin 10 0 5 10

 4*int>=0: minimum allowed distance to other junctions' donor/acceptor

SCORING

scoreGap 0

 gap open penalty

scoreGapNoncan -8

 non-canonical gap open penalty (in addition to scoreGap)

scoreGapGCAG -4

 GCAG gap open penalty (in addition to scoreGap)

15

scoreGapATAC -8

 ATAC gap open penalty (in addition to scoreGap)

scoreGenomicLengthLog2scale -0.25

 extra score logarithmically scaled with genomic length of the
alignment: -scoreGenomicLengthLog2scale*log2(genomicLength)

scoreDelOpen -2

 deletion open penalty

scoreDelBase -2

 deletion extension penalty per base (in addition to scoreDelOpen)

scoreInsOpen -2

 insertion open penalty

scoreInsBase -2

 insertion extension penalty per base (in addition to scoreInsOpen)

scoreStitchSJshift 1

 maximum score reduction while searching for SJ boundaries inthe
stitching step

ALIGNMENT and SEED PARAMETERS

seedSearchStartLmax 50

 int>0: defines the search start point through the read - the read is
split into pieces no longer than this value

seedSearchStartLmaxOverLread 1.0

 float: seedSearchStartLmax normalized to read length (sum of mates'
lengths for paired-end reads)

16

seedSearchLmax 0

 int>=0: defines the maximum length of the seeds, if =0 max seed
lengthis infinite

seedMultimapNmax 10000

 int>0: only pieces that map fewer than this value are utilized in the
stitching procedure

seedPerReadNmax 1000

 int>0: max number of seeds per read

seedPerWindowNmax 50

 int>0: max number of seeds per window

seedNoneLociPerWindow 10

 int>0: max number of one seed loci per window

alignIntronMin 21

 minimum intron size: genomic gap is considered intron if its
length>=alignIntronMin, otherwise it's considered Deletion

alignIntronMax 0

 maximum intron size, if 0, max intron size will be determined by
(2^winBinNbits)*winAnchorDistNbins

alignMatesGapMax 0

 maximum gap between two mates, if 0, max intron gap will be
determined by (2^winBinNbits)*winAnchorDistNbins

alignSJoverhangMin 5

 int>0: minimum overhang (i.e. block size) for spliced alignments

alignSJDBoverhangMin 3

17

 int>0: minimum overhang (i.e. block size) for annotated (sjdb)
spliced alignments

alignSplicedMateMapLmin 0

 int>0: minimum mapped length for a read mate that is spliced

alignSplicedMateMapLminOverLmate 0.66

 float>0: alignSplicedMateMapLmin normalized to mate length

alignWindowsPerReadNmax 10000

 int>0: max number of windows per read

alignTranscriptsPerWindowNmax 100

 int>0: max number of transcripts per window

alignTranscriptsPerReadNmax 10000

 max number of different alignments per read to consider

SPLICE JUNCTIONS DATABASE PARAMETERS

sjdbFileChrStartEnd -

 string: path to the file with genomic coordinates (chr <tab> start
<tab> end) for the introns

sjdbOverhang 0

 int>=0: length of the donor/acceptor sequence on each side of the
junctions, ideally = (mate_length - 1)

 if =0, splice junction database is not used

sjdbScore 2

 int: extra alignment score for alignmets that cross database
junctions

WINDOWS, ANCHORS, BINNING

winAnchorMultimapNmax 50

 int>0: max number of loci anchors are allowed to map to

18

winBinNbits 16

 int>0: =log2(winBin), where winBin is the size of the bin for the
windows/clustering, each window will occupy an integer number of bins.

winAnchorDistNbins 9

 int>0: max number of bins between two anchors that allows aggregation
of anchors into one window

winFlankNbins 4

 int>0: log2(winFlank), where win Flank is the size of the left and
right flanking regions for each window

CHIMERIC ALIGNMENTS

chimSegmentMin 0

 int>0: minimum length of chimeric segment length, if ==0, no chimeric
output

chimScoreMin 0

 int>0: minimum total (summed) score of the chimeric segments

chimScoreDropMax 20

 int>0: max drop (difference) of chimeric score (the sum of scores of
all chimeric segements) from the read length

chimScoreSeparation 10

 int>0: minimum difference (separation) between the best chimeric
score and the next one

chimScoreJunctionNonGTAG -1

 int: penalty for a non-GT/AG chimeric junction

19

chimJunctionOverhangMin 20

 int>0: minimum overhang for a chimeric junction

Smith-Waterman alignment parameters for PacBio reads

swMode 0

 int>=0: 0: no SW alignments, 1: full SW alignment

swWinCoverageMinP 50

 int>0: minimum read coverage percentage in a window that will be
aligned with SW

	1: Installation
	1.1: Ubuntu 12.04.1 LTS
	1.2: Red Hat Enterprise Linux 6.3, CentOS 6.2
	1.3: SUSE Linux Enterprise Server 11

	2: Before running STAR
	3: Generating genomes
	4: Generating genomes with a splice junctions’ database
	5: Running mapping jobs
	6: Crucial input parameters
	6.1: The following parameters are crucial for the STAR mapping runs:
	6.2: The following parameters control the filtering of the output alignments:
	6.2.1: To filter by mapped length and alignment score:
	6.2.2: To control the output of multi-mappers, use the following parameters:
	6.2.3: To control the number of mismatches per read pair, use:
	6.2.4: To filter out alignments containing non-canonical junctions use:
	6.2.5: To set maximum intron size:

	7: Loading genome into shared memory
	8: Output
	8.1: Log files
	8.2: SAM alignments
	8.2.1: Standard SAM attributes
	8.2.2: Extra SAM attrbiutes
	8.2.3: XS SAM strand attribute for Cufflinks/Cuffdiff

	8.3: Splice junctions

	9: All input parameters

